欢迎来到依吨块板官网! 进入会员后台 安全退出 关于我们 联系我们 帮助中心
tel
您的位置:首页 电路图封装

电路图封装

电子组件立体封装技术(下)

发布时间:2016-08-29 | 0次阅读

陶瓷的图案制作

如上所述1行程雷射法利用射出成形组件与铜箔图案界面的化学结合,确保铜箔图案的密着力,不过对化学特性很稳定的陶瓷表面图案制作却很困难。

经过反复试验研究人员发现部份铜薄膜长膜制程的改良,同样可以在陶瓷表面制作铜箔图案,获得其它整合成形立体基板(MID)制程没有的特征。

如图11所示有关陶瓷表面制作铜箔图案,理论上多层陶瓷基板也可行,不过受到铜箔图案位置精度与形状自由度有落差影响,此时整合成形立体基板(MID)反而可以突显它的优势。

有关铜箔图案位置精度,由于制作陶瓷基板时必需经过烧结制程,烧结后的基板会收缩,尤其是陶瓷基板铜箔图案制成后必需经过烧结制程,其结果造成铜箔图案本身也会收缩,因此射出成形组件铜箔图案的位置精度大幅降低,一般只有±50μm左右的精度。
 
多层陶瓷基板是由绿带(green sheet,陶瓷粉末薄片)堆积制成,制程上不易制作凸状与变形组件,相较之下整合成形立体基板(MID)的陶瓷,大多是在压制技术或是陶瓷射出成形(CIM: Ceramic Injection Molded)技术制成,接着再利用雷射加工法制作铜箔图案,因此不论是凸状或是3次元形状都可以制作铜箔图案,换言之陶瓷整合成形立体基板(MID)的铜箔图案位置精度比比多层陶瓷基板优秀,而且可以取得很大的形状自由度。

陶瓷具有高热传导率、低线膨胀率、高耐热性等特征。图12是包含聚醋酸乙烯酯(PPA)在内,各种材料与陶瓷的热传导率比较。

以陶瓷材料而言,一般氧化铝的热传导率是树脂的85倍,陶瓷材料如果使用氮化铝,可以获得比氧化铝高6倍的热传导率。
 
陶瓷材质的整合成形立体基板(MID),适合应用在要求高散热、高加热炉耐热特性等高辉度LED的贯通芯片封装。

图13是使用陶瓷整合成形立体基板(MID)技术的3芯片LED封装范例;图14是陶瓷整合成型立体基板(MID)的直角方向发光LED封装范例。

上述两范例都是利用Au-Sn胶将贯通芯片,在陶瓷整合成形立体基板(MID)进行晶粒固定(Die Bonding)封装,接着作导线固定与树脂密封,形成所谓的LED封装,本封装技术也支持覆晶封装。

使用陶瓷材质的整合成形立体基板(MID),具备以下特征分别是:

(1)高热传导率
(2)可制作微细铜箔图案
(3)高形状自由度

图13的3芯片LED封装范例,是将三个超高辉度、数W等级的LED,封装于5mm正方的整合成形立体基板(MID),实现数百流明(lm)超高照明辉度目标,未来该技术还可以应用在建筑用、照明用(Illumination),等要求多色度照明的领域。

可以复数封装贯通芯片的复芯片型陶瓷材质整合成形立体基板(MID),在小型化、热传导性、成本、功能面非常有利,一般认为未来可望成为微电子组件封装主流。


联系

联系我们的业务团队
您是否需要更多了解我们的产品及购买?

13862423653

给我们发电子邮件

客户中心

通过以下简单的方法来获得需要的答案

在线客服

电路客服 QQ 电路客服 QQ

电路品保 QQ 电路品保 QQ

二维码
在线咨询